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The Dean equations extended to a helical pipe flow 
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In  this paper the Dean (1928) equations are extended to  the case of a helical pipe 
flow, and it is shown thaf they depend not only on the Dean number K but also on 
a new parameter h / W ,  where h is the ratio of the torsion T to  the curvature K of the 
pipe axis and W the Reynolds number referred in the usual way to the pipe radius 
a and to the equivalent maximum speed in a straight pipe under the same axial 
pressure gradient. The fact that the torsion has no first-order effect on the flow is 
confirmed, but it is shown that this is peculiar to a circular cross-section. In  the case 
of an elliptical cross-section there is a first-order effect of the torsion on the secondary 
flow, and in the limit h/W+ co (twisted pipes, provided only with torsion), the first- 
order ‘displacement’ effect of the walls on the secondary flow, analysed in detail by 
Choi (1988), is recovered. 

Different systems of coordinates and different orders of approximations have 
recently been adopted in the study of the flow in a helical pipe. Thus comparisons 
between the equations and the results presented in different reports are in some cases 
difficult and uneasy. In  this paper the extended Dean equations for a helical pipe flow 
recently derived by Kao (1987) are converted to a simpler form by introducing an 
appropriate modified stream function, and their equivalence with the present set of 
equations is recovered. Finally, the first-order equivalence of this set of equations 
with the equations obtained by Murata et al. (1981) is discussed. 

1. Introduction 
The flow in curved pipes is very complex. Perhaps the most interesting consequence 

of the curvature is the development of a secondary flow consisting of a pair of 
counter-rotating vortices as represented in figure 1 .  The analysis of this flow started 
in 1927 with the paper of Dean, in which the flow in a toroidal system of coordinates 
r,  5 was studied. Since then a lot of work has been done, but the effect of the torsion 
has scarcely been examined, and the eventual helicity of the coils was usually 
neglected. The experiments are usually conducted in helical coils (see, for example, 
Lin & Tarbell 1980), so that it is important to evaluate the effect of the torsion on 
the secondary flow. This problem was discussed recently by Murata et al. (1981), 
Wang (1981), Germano (1982) and Kao (1987), and they obtained, using different 
orthogonal and non-orthogonal systems of coordinates, solutions for the steady flow 
in a helical pipe with constant curvature K and torsion T (see figure 2). 

Both Wang and Murata et al. studied perturbation solutions in the parameter E = 
K a ,  where a is the radius of the pipe, but while Wang found a first-order effect of the 
torsion on the secondary flow comparable with the effect of the curvature, Murata 
et al. found no sueh effect, and this result was confirmed recently by Kao. Germano 
showed that the secondary flow described by Wang is not projected in a normal 
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FIGURE 1. Coordinate system and secondary flow in a toroidal pipe, 

FIGURE 2. Helical pipe. Curvature K = R / ( R 2 + p a ) ,  torsion r = ( p / R 2 + p * ) .  

plane, and by using an orthogonal system of coordinates recovered the result of 
Murata et al. 

The study of Germano (1982) was conducted using the complete Navier-Stokes 
equations and the expansion of the solution was in terms of the parameter e ,  In the 
present paper we shall apply to these equations the standard procedure that leads to 
the Dean approximation (see Berger, Talbot & Yao 1983), and the Dean equations 
will be extended to a helical pipe. The results will be compared with those of Murata 
et al. and with those of Kao (the analysis of Wang was also conducted on the 
complete equations expanded in e ) ,  and the dependence on the Dean number, the 
Reynolds number and the ratio h = r / K ,  torsion to curvature, will be discussed. The 
fact that the torsion has no first-order effect on helical pipes of circular cross-section 
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FIGURE 3. Non-orthogonal helical coordinate system 

----- 
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FIGURE 4. Orthogonal helical coordinate system. 

will be tested once more, and its effect in the case of an elliptical cross-section will be 
examined. The secondary flow in a toroidal pipe of elliptical cross-section was studied 
by Cuming (1952), and in this paper his results are extended to a helical pipe in order 
to explore in this case also the eventual effect of the torsion. 

2. The coordinate system and the extended Dean equations 
In  the study of the flow in a pipe whose axial line is a generic spatial line it is 

important to choose an appropriate system of coordinates. Let us assume that we 
know the curvature and the torsion of the axial line as functions of the arclength s, 
K ( S )  and ~ ( s ) .  It is shown in German0 (1982) that  we can introduce two different 
systems of coordinates, represented in figures 3 and 4. These systems of coordinates 
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FIGURE 5. Reference system for helically symmetric solutions. 

are referred to the intrinsic triad of unit vectors, and T, N ,  B are the tangent, the 
normal and the binormal to the axial line. The first system of coordinates, figure 3, 
is non-orthogonal, and a generic point in a normal section of the pipe is identified by 
the arclength s and by the polar coordinates r and 6,  where 6 is a polar angle referred 
to the normal N .  The metric is given by the expression 

d P - d P  = [(l - K T C O S ~ ) ~ + T ~ ~ ~ ] ( ~ ~ ) ~ +  (dr)2+r2(d6)2+27r2dsd6. 

In the second system of coordinates, figure 4, the polar angle 6 is referred to a 
rotated unit vector N*, and the rotation is given by the angle qi + q50, where qi is given 
by the integral 

q5 = -107(s’)ds’, 

and qio is an arbitrary constant angle. In this case the metric is given by the 
expression 

d P - d P  = [l - KTCOS (6+q5+q50)] (dS)2+ ( d ~ ) ~ + r ~ ( d 6 ) ~  

and it is easy to see that when T = 0 this system of coordinates reduces to the usual 
toroidal one, while it reduces to the cylindrical one when K = 7 = 0. This system of 
coordinates is well known to researchers involved in studies on hydromagnetic 
equilibria. It was first introduced by Mercier (1963) and was extensively used by 
Solove’v & Shafranov (1970) in their computations of plasma confinement in closed 
magnetic systems. In Germano (1982) the author has written the Navier-Stokes 
equations for an incompressible viscous fluid in this orthogonal system of coordinates, 
and the constant angle qio was assumed equal to in. Let us use the same notation as 
Germano (1982) : 

7 uu 
K ’  V 

€ = K U ,  h = -  w=-, 
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where a is the radius of the pipe, or a mean radius in the case of a non-circular cross- 
section, s the length along the axis, r the distance from the axis in a normal section, 
p and v the kinematic pressure and viscosity, 5it the Reynolds number, u the velocity 
along the tube, v and w the polar components of the velocity in a normal section (see 
figure 5) and U a reference velocity, usually given by the equivalent maximum speed 
in a straight pipe under the same pressure gradient. The continuity and the 
momentum equations are given by the expressions 

ati ao 1 aa o 
aa ar" r" ae r" 

~ - + - + - - + - + + w [ ~ s i n ( B + $ ) + ~ c o ~ ( ~ + $ ) ]  = 0;  

This set of equations is valid for a generic spatial curve, and we shall consider here 
the case of a helix, a curve with constant curvature K and torsion 7 .  In  this case it 
is possible to search for helically symmetric solutions of the general equations, 
solutions that physically correspond to  a fully developed flow in a helical pipe. In 
order to do that we operate the following transformations from a, 8, 7" to  a, f ,  r " :  

a a  a a a  e++f, -+---€A- -+- aa aa a t '  ae at7 
and if we set the resulting &derivatives equal to zero, with the exception of the 
pressure derivative, we finally obtain the equations governing the required helically 
symmetric solutions : 

- + - - + - + E W  v"sint+Gcos[-A- = 0, ( "3 a t  
a5 iaa v" 
a? r" a t  r" 

( 
,ati aati 

ar r a t  v 7 + - + ewG $7 sin 5 + cos f - h - 

(3) 
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where 

Let us now drop higher-order terms in s from (3) and (4). This physically 
corresponds to considering loosely coiled pipes, and following the standard procedure 
we preserve the centrifugal terms and we write explicitly 

G 
w B =  wv", 8 = 86, j7 = --g+sj71(r",[), 

where G is a constant related to the dimensional pressure gradient along the pipe by 
the expression 

.@a 
G = - H ,  

P V  
where H is the pressure gradient. We now introduce the Dean number K = 2sw2, and 
we obtain 

where higher-order terms in e have been discarded and where 
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FIGURE 6. 
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Reference system for helically symmetric solutions : elliptical cross-section 

oriented with N and B. 

Equation (5) is automatically satisfied by the pseudo-stream function $ : 

and from (6) we finally obtain 

with axes 

Equations (8) and (9) represent the extended Dean equations for a helical pipe 
flow. They depend not only on the Dean number K but also on the parameter h / 9 ,  
and we note that the effect of the torsion is reduced to two terms, one of which is 
a constant, affecting the equation for the stream function $. If the value of this 
parameter is low, typically for high Reynolds numbers or for low values of the 
torsion, the equations reduce to the usual Dean equations. It is apparent that the 
effect of the torsion increases with decreasing Reynolds number. 

3. First-order effect of the torsion on pipes of elliptical cross-section 
Let us now consider a pipe with an elliptical cross-section, whose axes of lengths 

2b and 2a are always oriented in the directions of the normal N a n d  the binormal B 
to the helical axis, as in figure 6. 

If we assume a as a reference length, the boundary %? is given by the relation 

i - t + ( i - A 2 ) P s i n 2 ~  = 0, 

where A = a/b,  and the boundary conditions on 5%' for .iz and 4 are 
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If we now introduce in (8) and (9) the usual expansions in terms of the integer 
powers of the Dean number K :  

I 3 =  3,+K3,+K2u2+. . . ,  
+ = +'o+K$l+K2+2+. . . ,  

we obtain to the first order the following sets of equations: 

V23,+G = 0, 

+a = 0, 

v4+.,=u0 - --- sint33, COSC- 3) +2G-  ;;J (i a t  
and if we aasume as reference velocity U the maximum speed in a straighl 
the same pressure gradient, we have 

G = 4-2 (1  - A 2 )  

and 3, = l -P+(l-A2)Psin2c.  

The value of +1 in the toroidal case, A/& = 0, was obtained by Cuming 
extended the Dean results to pipes of elliptical cross-section. We indicate this value 
as $f and its expression is given by 

~; = 3:(Cl + C, P sin2 6 + C, P cos2 5) ?cos 5, (15) 

375  + 820A2 + 11 14A4 + 212A6 + 39Aa 
180(5 + 2A2 + A4) F ( d )  

c, = I 

( 15  + 26A2 + 39A4) 
180F( A )  ' 

, c3=- (75 + 2A2 + 3A4) 
180F(A) 

c, = - 

F ( A )  = 35 + 84A2 + 114A4 + 20A' + 3A8. 

Obviously when A = 1 this expression for +; reduces to the first-order Dean solution, 
and it is easy to see that in the case A/B!  =I= 0 we satisfy both the boundary conditions 
and the perturbed equation when 

where h is given by 
1 + A 2  

h =  
6( 1 + A 4 )  + 4A2'  

The secondary flow in the normal section is given by 

8 =  KUl + P U 2 + .  . . , w = Km, +K2.iii2+. . . , 
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where 

FIGURE 7. Secondary flow, A = 0.65, A/B = 

and we can see that when A = 1, circular cross-section, we 

0.01. 

obtain 

so that the fact that the torsion has no first-order effect on the secondary flow 
(German0 1982) is confirmed. On the other hand i t  is evident that when the cross- 
section is elliptical there is a first-order effect on the secondary flow. It is interesting 
to note that the perturbation to the axial velocity E l ,  and by consequence the flux, 
do not depend in any case on the torsion at  the first order. In effect, since 

$1 = $? +hZU,,' -2 

we obtain from (12a)  

which shows the independence of 2, from the torsion. The Cartesian components of 
the secondary motion are explicitly given by 

V ,  = 2eUB( 1 - x2 - A2y2) - 2C2 X( 1 - x2 - A2y2) 

vY = ~ E U B ( ~ - X ~ - A ~ Y ~ )  ( C , + C , Y ~ + ~ C ~ X ~ ) ( ~ - X ~ - A ~ ~ ~ )  

where x and y are dimensionless with respect to a. In  the limit h/B = 0 we recover 
the first-order result in E of Cuming and in figure 7 the pattern of the secondary flow 
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FIGURE 8. Secondary flow, A = 0.6: (a) A/W = 0;  ( b )  0.1 ; (c) 1. 
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A197 = 0 

A/a = 0 
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FIQURE 9. Secondary flow, A/W = 0, A/W + 00 : (a )  A > 1 ; ( b )  A < 1. 

for a moderate value of A/&? and for an aspect ratio A = 0.65 is presented. We note 
a small but significant modification of the two-cell structure. This becomes much 
more marked as A 1 9  increases, as seen in figure 8 where a sequence for A/&? = O , O . l ,  
1 (and for A = 0.6) is produced. The case h/W+ 00 is particularly interesting to 
discuss and it is easy to see from (19) that for A = 0.6, owing to their sensitivity to 
the aspect ratio A ,  this limit is practically reached when h/W = 1. It physically 
corresponds to the case of pipes provided only with torsion, twisted pipes, and in this 
limit the patterns of the induced secondary flow can be calculated very easily from 
(19). In this limit the Cartesian components of the secondary motion are given by 

I A4 + 2A2 - 3 
3A4 + 2A2 + 3 ” 

3A4 + 2A2 + 3 2’ 

v, = UTa( 1 - x 2  - A2y2) 

3A4-2A2-1 
wy = U7a(l-x2-A2y2) 

and we can derive that 
-’.=-=-- dx 3+A2 y 
0% dy 1+3A2x* 

It is easy to see that the apparent streamlines of the secondary flow in a twisted pipe 
are, to first order, hyperbolae 

y2 - qx2 = constant, 



300 M .  Germano 

where 
1 +3A2 

q = 3 + n 2  

and the essential features of these limiting patterns are given in figure 9. We see that 
they are very different from the Dean-Cuming circulatory flow. The pure effect of the 
torsion is as if a saddle flow were induced in the normal planes, whose direction 
depends on A .  The flow is reversed when A = 1, and the boundaries apparently act as 
sinks and sources for the secondary flow. These results are in agreement with similar 
results obtained by Todd (19771, Kotorynski (1986) and by Choi (1988) and we refer 
also to the recent paper of Todd (1986) for a general analysis of the steady laminar 
flow through thin curved pipes. In  Choi’s paper the steady fully developed flow 
through a slowly twisted pipe of elliptical cross-section is analysed by perturbation 
methods, starting from the complete Navier-Stokes equations. The expansion is 
conducted up to  the second order in 6, and the first-order terms of the secondary 
velocities agree perfectly with our results in the case ,4192 -+ co expressed by the 
relations (20). The unexpected form of the secondary flow, so different from the two- 
cell structure, and the role of the walls that apparently act as sources and sinks, are 
clearly discussed by Choi in terms of a first-order ‘displacement’ effect of the non- 
circular cross-section in the case of a pipe provided with torsion. If we refer to figure 
8 ( c )  we see that the torsional rotation of the walls actively pushes the flow in the 
direction of torsion, and its effect is similar to that of an actual wall displacement. 
Obviously the real trajectories do not go from one wall to another, but from - co to 
co, and in Choi’s paper they are calculated by integrating with respect to time the 
components of velocity relative to the rotating elliptic cross-section. We note finally 
that the limiting equations obtained by (7),  (8) and (9) when A/B+ co are given by 

where 

We see that in this case the equations depend only on the parameter T ,  and in the 
case of a circular cross-section they are identically satisfied by the unperturbed 
Poiseuille flow. Obviously the ‘pure’ effect of torsion on a twisted tube of circular 
cross-section is zero at all orders. 

4. Comparisons among different authors 
The fully developed laminar flow in a helical pipe has been studied recently in four 

papers. In  two of these, Wang (1981) and Murata et al. (1981), the flow equations are 
deduced in a system of non-orthogonal coordinates, while in the other two, Germano 
(1982) and Kao (1987), an orthogonal system of coordinates has been adopted. Some 
controversy exists concerning the results and in this section we try to compare the 
different equations obtained in these papers. 
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Let us consider first the article by Kao. Like the present author he adopts an 
orthogonal system of coordinates, and in the limit E -+ 0 his equations are 

In these equations K is the Dean number, B is the dimensionless vorticity for the 
secondary flow and @ is given by 

The radial and azimuthal components of the velocity u and v are made dimensionless 
with respect to vla, the axial component m with respect to 

r and a are polar coordinates in a normal plane, and the radial coordinate r is referred 
to the pipe radius a. 

At this point Kao introduces the following stream function $ (his equation (15)) : 

which identically satisfies (24) and which, when introduced in (25) and (26) ,  finally 
gives (his equations (16) and (17)) 
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Thc pscudo-stream function @ introduced by Kao is well suited to the study of the 
complete equations, but in the case of this reduced set of equations a different, choice 
introduces considerable simplifications. Let us introduce a modified strcam function 

where A = -/$Ki. The continuity equation (24) is automatically satisfied, and it is 
easy to see (Appendix A) that (29) and (30) reduce exactly to the extended Dean 
equations (8) and (9) derived in the present paper: 

(321 

apart from the different symbols and the fact that  a = (-in. 
Let us now consider the paper by Murata et al. The equations obtained by these 

authors are given by the expressions (18)-(20) of their article, see Appendix B, and 
they are exactly the equations derived in this paper, apart from the term A2 a(@2)/aa 
that appears in the present equation (33), which in their order of approximation is 
lost. Their equations were derived in a non-orthogonal system of coordinates but 
they considered the opportunity of converting their results to an orthogonal form: 
‘The coordinates axes used here ... are oblique except for the pipe center line. 
Accordingly u, v and w are expressed as the velocity components along these oblique 
axes. It is more convenient for understanding to express the velocity components 
along the axes r ,  g~ (a  for Kao), and the axis perpendicular to  r- plane everywhere 
in a pipe cross section’ (Murata et al., p. 357). As a consequence they operate the 
transformation from their oblique components to the orthogonal components, and 
their equations and the present extended Dean equations are the same apart from a 
term discarded in their order of approximation. As regards, finally, the results of Kao 
we notice that, apart from a sign that depends on the fact that his ositive torsion 
is a negative torsion for the present author, the quantity A = -@KT corresponds to 
the quantity (A/&?) A& of our equations. As a consequence Kao expands his solutions 
in terms of the semi-integer powers of the Dean number K,  and the parameter @ 
appears, while our expansions are in terms of the integer powers of the Dean number 
K ,  and the discussion of the torsion effect is conducted in terms of the parameter 

P 

A/R. 

5. Conclusions 
The Dean equations extended to a helical pipe flow depend not only on the Dean 

number K but also on the parameter h / W ,  where h is the ratio of torsion to curvature 
and W the Reynolds number. The importance of the terms induced by the torsion of 
the pipe decreases by increasing 9, so that one important conclusion is that the effect 
of the torsion is more evident at low Reynolds numbers. 

In  this paper t8he extended Dean equations are derived from the complete 
Navier-Stokes equations and are studied in terms of expansions in the integer powers 
of the Dean number K .  When h/W = 0 we recover the classical solutions recently 
studied in detail by Van Dyke (1978), and in the limit of the first-order terms no first- 
order effect of the torsion has been shown. All that confirms a previous result 
(Germano 1982) and in this paper i t  is shown that this result is peculiar to the circular 
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cross-section. I n  the case of a helical pipe of elliptical cross-section there is a first- 
order effect of the torsion on the secondary flow, and in the limit of A/B? + 00, very 
low Reynolds numbers, it consists of a saddle flow in normal planes. These results are 
confirmed by similar results obtained by different authors following different 
procedures. A more complex expression of the extended Dean equations derived by 
Kao (1987) has been shown in this paper as equivalent to the present formulation, 
while the relations of Murata et al. (1981) differ from the present equations by a term 
in ( A / 9 ) z  retained both by Kao and the present author. 

The comparison among the different papers is slightly uneasy because of the 
different symbols, coordinates, parameters and kind of expansions used by the 
different authors. Kao in particular expands the perturbative solutions in terms of 
the semi-integer powers of K ,  and the parameter 4 that appears in its equations 
corresponds in terms of the present symbols to the quantity (A/&?)%$. The present 
form of the extended Dean equations and the proposed parameters are, in the 
opinion of the author, simply connected to the physics and the geometry of the 
problem. The expansion in terms of the integer powers of the Dean number permits 
a direct comparison of the results with the toroidal case, and the extension of the 
analysis to  higher-order terms by computer should be conducted in a similar way to 
the usual extensions, see Van Dyke (1978). In the opinion of the author it is advisable 
in future studies to use the modified stream function (7) introduced in this paper and 
the simple extended Dean equations (8) and (9) that follow. In this confusing 
scenario of orthogonal and non-orthogonal coordinates, higher and lower order of 
approximations, this form of the extended Dean equations represents, in the opinion 
of the author, a reference point reached and confirmed by different and independent 
researches and methods. We stress finally that a peculiar advantage of the 
orthogonal system of coordinates is due to the fact that they can be easily generalized 
to a generic spatial axis and to a generic system of coordinates in normal planes 
(German0 & Oggiano 1985). 

The author acknowledges financial support from the Italian Ministry of Education. 

Appendix A 
Let us express the vorticity SZ in terms of the new modified stream function q ~ ,  We 

have 

where 

and if we now introduce this expression in (26), (equation (14) of Kao 1987), we 
obtain 

V4cp+2AV2m+AV2 V2g,+2Am+Ar- 

where V4 = V2V2. 
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We now recall the following identities: 

aa m 
V2(riij) = rV2w+2-+--, 

ar r 

so that we obtain 

By applying these identities and by the use of (32) and its deriva.te, 

we finally obtain from (A 2) the simple expression (33). 

Appendix B 
The resulting equations of Murata et al. (1981) are the following (their equations 

(18)-(20)) : 
vy=--W, (B 1) 

1 a ( f , W )  V%+--= 2D,D,-w , 
r a(r,g,) 

1 a ( f  w) vzw+-- = -q, 
r a(r,p?) 

where L), is equivalent to Mi, w corresponds to mKi, g, = a + n: and D,  is equal to - 2$ 
(the minus sign is because Kao considers a right-handed helix). 

The function f that appears in these equations is the true stream function in the 
non-orthogonal system adopted by Murata et al., so that their non-orthogonal 
velocity components are 

u=-- 1 af v=-- af 
r + ’  ar’ 

and v does not correspond to the Kao orthogonal components v. 
The transformations to the orthogonal components are (Murata et al., equation 

and now I1 and V are the u and v of Kao. It is interesting to note that the same 
equations are interpreted in the orthogonal system of coordinates as a derivation of 
the velocities from a modified stream function g,, and in the non-orthogonal system 
as a transformation of components. Anyway, the method used does not matter, and 
i t  is interesting to note that similar equations are obtained from following different 
routes. 
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